为什么振动检测在工业制造领域非常重要
据估计,由于计划外停机,工业制造商每年要承担高达500亿美元的成本,维护费用占总生产成本的15%至40%。这些统计数据清楚地说明了为什么预测性维护是工业4.0时代讨论最多的话题。通过有针对性的方法提前预测和预防严重故障的能力,有望大大提高设备的正常运行时间,同时降低维护成本。
工业4.0中的预测性维护
由于计划外停机成本比计划内停机成本高得多,因此预防性维护已成为几十年来的行业标准。然而,仅仅为了谨慎而进行的冗余维护活动也不是一个最佳方法。一项研究表明,高达一半的预防性维护费用被浪费掉了,这直接影响到了企业的利润。更不用说,只有20%的机器故障与使用寿命有关,而其他80%的机器故障是偶发事件。因此,一个基于常规的维护方案并不一定能保证及时发现和解决问题。
预测性维护通过持续监测和分析机器健康状况来主动诊断和预测故障,从而克服了这些缺陷。作为工业4.0革命的核心支柱,预测性维护利用新一代物联网技术来收集机器内部所有事件的数据。将丰富的实时和历史资产数据与机器学习和预测分析相结合,可以有效地研究和确定不同的故障类型及其根本原因和之前的症状。一旦设备出现危险信号,就可以安排检查和维修,以避免灾难性停机事件发生。
预测性维护的振动监测
对于广泛应用于各行各业的旋转设备来说,振动即使不是即将发生故障的首要指标,也是其中之一。振动强度的不必要增加会对部件产生有害的力,从而危及设备的使用寿命和质量。如果不及时干预,设备故障和流程关闭是不可避免的。
配备传感器(如加速计)的机器可以让制造商随时掌握振动模式的任何变化。持续监测非常有益,因为振动问题通常不会升级并导致设备损坏。通过在早期阶段密切监控和检测趋势,技术人员将有足够的时间在故障发生前进行应对。
无线振动监测
使传感器具有无线连接,有望满足大规模、远程振动监测的预测性维护需求。在大多数情况下,传感器需要每分钟或每几分钟发送一次振动数据,因此无线通信比有线通信提供了一种可行且更具成本效益的选择。通过计讯物联工业网关对采集的数据进行无线传输,保障了数据传输的准确性与实时性。从而大大简化了安装和维护。
随着工业4.0的不断发展,预测性维护策略使制造商在优化资产正常运行时间和效率方面取得了长足的进步。在这种情况下,无线振动监测使技术人员能够以前所未有的规模获得关于机器性能的关键且可操作的数据,从而将预测性维护变为现实。